Glucagon is required for early insulin-positive differentiation in the developing mouse pancreas.
نویسندگان
چکیده
The embryonic pancreas is thought to develop from pluripotent endodermal cells that give rise to endocrine and exocrine cells. A key guidance mechanism for pancreatic development has previously been found to be epithelial-mesenchymal interaction. Interactions within the epithelium, however, have not been well studied. Glucagon is the earliest peptide hormone present at appreciable levels in the developing pancreatic epithelium (embryonic day [E]-9.5 in mouse). Insulin accumulation begins slightly later (E11 in mouse), followed by a rapid accumulation during the "second wave" of insulin differentiation ( approximately E15). Here we found that blocking early expression and function of glucagon, but not GLP-1, an alternate gene product of preproglucagon mRNA, prevented insulin-positive differentiation in early embryonic (E11) pancreas. These results suggest a novel concept and a key role for glucagon in the paracrine induction of differentiation of other pancreatic components in the early embryonic pancreas.
منابع مشابه
The Expression and Function of Glucose-Dependent Insulinotropic Polypeptide in the Embryonic Mouse Pancreas
OBJECTIVE Glucose-dependent insulinotropic polypeptide (GIP) is a member of a structurally related group of hormones that also includes glucagon, glucagon-like peptides, and secretin. GIP is an incretin, known to modulate glucose-induced insulin secretion. Recent studies have shown that glucagon is necessary for early insulin-positive differentiation, and a similar role for incretins in regulat...
متن کاملDifferentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell
Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...
متن کاملتمایز بنیاختههای جنینی انسان به سلولهای مولد انسولین
Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...
متن کاملبررسی اثر مهاری سلولهای بنیادی مزانشیمی بافت چربی بر روی تکثیر سلولهای تک هستهای طحالی موش دیابتی C57BL/6 در محیط آزمایشگاه
Background: Type 1 diabetes (T1D) is a T-cell mediated autoimmune disorder in which pancreas beta-cell destruction causes insulin deficiency and hyperglycemia. In addition to daily insulin treatment, allogeneic islet transplant inT1D is another therapeutic way that needs immunosuppressive drugs to control autoimmune damage and graft rejection. Since life-long application of these drugs is ...
متن کاملPancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro
The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 51 11 شماره
صفحات -
تاریخ انتشار 2002